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Direct numerical simulations (DNS) are performed to investigate the evolution of
turbulence in a uniformly sheared and stably stratified flow. The spatial discretization
is accomplished by a spectral collocation method, and the solution is advanced in
time with a third-order Runge–Kutta scheme. The turbulence evolution is found to
depend strongly on at least three parameters: the gradient Richardson number Ri,
the initial value of the Taylor microscale Reynolds number Reλ, and the initial value
of the shear number SK/ε. The effect of each parameter is individually studied while
the remaining parameters are kept constant. The evolution of the turbulent kinetic
energy K is found to follow approximately an exponential law. The shear number
SK/ε, whose effect has not been investigated in previous studies, was found to have
a strong non-monotone influence on the turbulence evolution. Larger values of the
shear number do not necessarily lead to a larger value of the eventual growth rate
of the turbulent kinetic energy. Variation of the Reynolds number Reλ indicated that
the turbulence growth rate tends to become insensitive to Reλ at the higher end of
the Reλ range studied here. The dependence of the critical Richardson number Ricr ,
which separates asymptotic growth of the turbulent kinetic energy K from asymptotic
decay, on the initial values of the Reynolds number Reλ and the shear number SK/ε
was also obtained. It was found that the critical Richardson number varied over the
range 0.04 < Ricr < 0.17 in our DNS due to its strong dependence on Reynolds and
shear numbers.

1. Introduction
During the past decade, both numerical simulations and laboratory experiments

of homogeneous turbulence in a stably stratified shear flow have been performed
to investigate the effects of shear and stratification on the turbulence evolution.
These studies were undertaken with the goal of explaining and understanding the
turbulent microstructure of geophysical flows in the atmosphere and ocean. The
present paper considers stratified shear flow with a uniform gradient of the ambient
density Sρ and uniform mean shear rate S . The primary non-dimensional parameter
that determines the turbulence evolution in such a flow is the gradient Richardson
number Ri = N2/S2, the square of the ratio of the Brunt–Väisälä frequency N =

† Also Scripps Institution of Oceanography.
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[(−gdρ̄/dz)/ρ0]
1/2 and the mean shear rate S . A critical value of the Richardson

number Ricr can be found for which the turbulent kinetic energy K stays constant
in time, grows in time for Ri < Ricr , and decays in time for Ri > Ricr . Knowledge
of the critical Richardson number is therefore important as it divides the asymptotic
fate of the nonlinearly evolving turbulence into growth or decay. The significance of
the Richardson number was first mentioned in Taylor’s 1914 Adams Prize Essay†.
Subsequent studies by Richardson (1920), Prandtl (1930), Taylor (1931), Goldstein
(1931), and Miles (1986) confirmed the important role of the Richardson number
Ri and established Ri > 1 as the sufficient condition for stability based on energy
arguments. Linear, inviscid stability theory yields Ri > 1/4 as the sufficient condition
for stability of a stratified shear flow (Miles 1961 and Howard 1961). An analysis
of the equations of homogeneous turbulence in a stratified shear flow was applied
to atmospheric flow by Batchelor (1953b) and Townsend (1957). Using experimental
observations of entrainment, Townsend estimated the critical value of the Richardson
number to be about Ricr = 0.08.

The first direct numerical simulations (DNS) of homogeneous turbulence in a
stratified shear flow were performed by Gerz, Schumann & Elghobashi (1989). In
their investigation shear periodic boundary conditions were used in combination with
a finite difference/spectral collocation method. The simulations were performed on a
grid with 643 points. The Richardson number was varied over the range 0 6 Ri 6 1.
Gerz et al. found that the evolution of the turbulent kinetic energy K depends
strongly on the Richardson number Ri. The initial energy partition η, the ratio of the
potential to kinetic energy, was found to lead to different initial transients but not to
influence the turbulence evolution over a long period of time. Gerz et al. investigated
the occurrence of counter-gradient heat fluxes which were more prominent for large
Richardson numbers and high molecular Prandtl numbers.

Holt, Koseff & Ferziger (1992) investigated the turbulence evolution in a homo-
geneous stably stratified shear flow using purely periodic boundary conditions in
combination with a spectral collocation method. The simulations were performed
on a grid with 1283 points. The simulations covered a parameter range 0 6 Ri 6 1
and 20 6 Reλ 6 100, where Reλ is the Taylor microscale Reynolds number. They
divided the turbulence evolution into shear- or buoyancy-dominated regimes for the
Richardson number smaller or larger than the transitional value Rit for which the
vertical density flux vanishes. Simulations with constant turbulent kinetic energy K
were found to lie in the shear-dominated regime, that is Ricr < Rit. Holt et al. in-
vestigated the influence of the initial energy partition η and of the molecular Prandtl
number Pr and agreed with the conclusions of Gerz et al. (1989). In addition the
dependence of the turbulence evolution on the Reynolds number Reλ was addressed.
It was found that the critical Richardson number Ricr increases with the Reynolds
number Reλ.

Kaltenbach, Gerz & Schumann (1994) performed large-eddy simulations to inves-
tigate the turbulent transport in a homogeneous stably stratified shear flow. They
observed that vertical overturning and mixing is suppressed when the inverse Froude
number Fi = Nl/q (l is an integral length scale of the velocity, and q is the root-
mean-square velocity) exceeds a critical value of about 3.

Rohr et al. (1988) performed the first successful experiments on homogeneous
turbulence in a stably stratified shear flow in a salt-stratified water channel. A

† According to Taylor (1931) and Miles (1961). The Adams Prize Essay is not available to the
authors.
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variation of the Richardson number Ri led to constant vertical velocity fluctuations
urms3 for Ri = Ricr = 0.25 ± 0.05, growing urms3 for Ri < Ricr , and decaying urms3 for
Ri > Ricr .

Piccirillo & Van Atta (1997) investigated the turbulence evolution in a homogeneous
stably stratified shear flow using a thermally stratified wind tunnel, in which they
varied the Reynolds number Reλ over a small range by using a variety of different
turbulence-generating grids. They found a decrease of the critical Richardson number
Ricr with increasing grid size and thus increasing Reynolds number Reλ. Holt et al.
(1992), on the other hand, found an increase of Ricr with increasing Reλ.

The evolution of high-shear-number flow has been studied analytically and numer-
ically. For high shear numbers SK/ε, the nonlinear term in the momentum equation
may become less important than the shear forcing term. Therefore the nonlinear term
can be neglected, and a simplified analysis can be performed instead. This approach
is known as rapid distortion theory (RDT). An introduction to RDT is given in the
review article by Hunt (1978) and more recently by Savill (1987). The application of
RDT to viscous unstratified shear flow by Rogers (1991) predicts eventual decay of
the turbulent kinetic energy after initial algebraic growth. Because of the neglect of the
nonlinear term, RDT results formally apply for short-time evolution (St = O(1)). An
experimental study of unstratified high-shear-number flow was recently performed by
Souza, Nguyen & Tavoularis (1995). They found that the magnitude of the Reynolds
shear stress anisotropy decreases at large shear numbers.

A motivation of this study is to explain the apparently different dependence
of the critical Richardson number Ricr on the Reynolds number Reλ observed in
direct numerical simulations by Holt et al. (1992) and experimental investigations
by Piccirillo & Van Atta (1997). Assuming that both DNS and experiments are
correct, we hypothesized that, perhaps, there is another parameter in the problem.
An analysis of the governing equations shows that the shear number SK/ε is an
additional parameter, and an inspection of the data of Piccirillo & Van Atta (1997)
shows that the different turbulence-generating grids lead to not only different Reynolds
numbers but also different shear numbers. We perform a systematic DNS study of
the effect of the shear number SK/ε on the turbulence evolution and show that,
indeed, the shear number has a strong influence. As this work progressed, the
DNS results prompted a timely assessment of the effect of the shear number SK/ε
in the laboratory experiments, as described in Piccirillo & Van Atta (1997). It
should be noted that the previous numerical studies did not investigate the role of
SK/ε.

An additional motivation of the present study is to perform direct numerical
simulations at the higher Reynolds numbers accessible with today’s supercomputers,
in order to investigate the possibility of a decreased influence of the Reynolds number
Reλ on the turbulence evolution at high values of Reλ.

In the following section, the evolution and transport equations used in this study are
introduced, and the non-dimensional parameters governing the turbulence evolution
are derived. In §3 the numerical method is described, and the initial conditions and
their importance for effective parameterization are addressed. The dependence of the
evolution of the turbulent kinetic energy on the non-dimensional parameters derived
in §2 is presented in §4. In §5 the asymptotic evolution of the turbulent kinetic energy
is summarized. The dependence of the critical Richardson number on the remaining
non-dimensional parameters is discussed in §6. Section 7 summarizes our conclusions
on the turbulence evolution in a stably stratified shear flow. The numerical method
used in this study is validated in an Appendix.
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Figure 1. Sketch of the mean velocity and the mean density.

2. Mathematical preliminaries
In this section the equations of motion used to describe the evolution of a turbulent

stratified shear flow are presented. In addition the transport equations for second-
order moments are introduced. Finally the non-dimensional parameters governing
the turbulence evolution are derived.

2.1. Equations of motion

Our study of a turbulent stratified shear flow is based on the continuity equation
of an incompressible fluid, the Navier–Stokes equation and a transport equation for
the density. In the following, Xi is the ith coordinate of an orthonormal Cartesian
coordinate system, Ui is the ith component of the total velocity, % is the total density,
P is the total pressure, g is the gravitational constant, µ is the molecular viscosity
of the fluid, and κ is the diffusion coefficient. The dependent variables Ui = Ui + ui,
% = %+ ρ, and P = P + p are decomposed into a mean part (denoted by an overbar)
and a fluctuating part (denoted by lower-case or alternative greek letters). The mean
velocity Ui = SX3δi1 and the mean density % = ρ0 + SρX3 are given by the constant

velocity gradient S = ∂U1/∂X3 and the constant density gradient Sρ = ∂%/∂X3,
as shown in figure 1. It is assumed that a mean pressure gradient balances the
mean buoyancy force, that is 0 = −∂P/∂X3 − g(ρ0 + SρX3). This decomposition is
introduced into the equations of motion. Furthermore the Boussinesq approximation
is employed.

Spectral accuracy in the spatial discretization can be obtained by the use of periodic
boundary conditions, but due to the effect of shear, periodic boundary conditions
cannot be applied directly to the equations of motion. In previous simulations,
Gerz et al. (1989) used shear periodic boundary conditions in combination with finite
difference approximations. To use strictly periodic boundary conditions, the equations
must be transformed into a frame of reference that is moving with the mean flow.
This approach was originally developed by Rogallo (1981), and it has been used in
a number of simulations of turbulent shear flow (Rogers, Moin & Reynolds 1986),
compressible turbulent shear flow (Sarkar 1995) and turbulent stratified shear flow
(Holt et al. 1992). After non-dimensionalization, the transformation t = T and
xi = Xi − STX3δi1 yields the following equations:

∂uj

∂xj
− St ∂u3

∂x1

= 0, (2.1)
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∂ui

∂t
+uj

∂ui

∂xj
−Stu3

∂ui

∂x1

+Su3δi1 = − 1

ρ0

(
∂p

∂xi
− St ∂p

∂x1

δi3

)
−Gρδi3

+
1

Re

(
∂2ui

∂xj∂xj
− 2St

∂2ui

∂x1∂x3

+ S2t2
∂2ui

∂x1∂x1

)
, (2.2)

∂ρ

∂t
+ uj

∂ρ

∂xj
− Stu3

∂ρ

∂x1

+ Sρu3 =
1

RePr

(
∂2ρ

∂xj∂xj
− 2St

∂2ρ

∂x1∂x3

+ S2t2
∂2ρ

∂x1∂x1

)
(2.3)

Here Re = UL/ν is the Reynolds number, Pr = ν/κ is the Prandtl number, and
G = gL/U2 is the non-dimensional gravity coefficient. U, L, and ρ0 are characteristic
scales for velocity, length, and density, respectively. The numerical method used to
solve this set of equations is introduced in §3.1.

2.2. Transport equations

In this subsection the transport equations for second-order moments are derived.
The overbar a denotes the volume average of a, which is the appropriate Reynolds
average in the case of homogeneous flow studied here. The homogeneity is preserved
due to the uniformity of the ambient density gradient Sρ and the mean shear rate S
as discussed by Batchelor (1953a). The transport equation for the Reynolds stress
Rij = uiuj is derived from the ith and jth components of the momentum equation:

d

dt
Rij = Pij − Bij + Tij − εij , (2.4)

Pij = −S(uiu3δj1 + uju3δi1), (2.5)

Bij =
g

ρ0

(uiρδj3 + ujρδi3), (2.6)

Tij =
1

ρ0

(
p
∂ui

∂xj
+ p

∂uj

∂xi

)
, (2.7)

εij = 2ν
∂ui

∂xk

∂uj

∂xk
. (2.8)

Here Pij is the production term, Bij the buoyancy term, Tij the pressure-strain term,
and εij the dissipation term. The trace of this equation gives the transport equation
for the kinetic energy K = uiui/2:

d

dt
K =

d

dt

(
1
2
uiui
)

= P − B − ε, (2.9)

P = −Su1u3, (2.10)

B =
g

ρ0

u3ρ, (2.11)

ε = ν
∂ui

∂xk

∂ui

∂xk
. (2.12)

In addition, the anisotropy tensor bij is defined as

bij =
uiuj

ukuk
− 1

3
δij . (2.13)
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The transport equations for the mass fluxes Mi = uiρ are derived from the momen-
tum equation and the transport equation for the density:

d

dt
Mi = −Suiρ− Sρuiu3 −

g

ρ0

ρρδi3 +
1

ρ0

p
∂ρ

∂xi
− ν

κ
(ν + κ)

∂ui

∂xk

∂ρ

∂xk
. (2.14)

Finally the transport equation for the density variance ρρ is derived from the
transport equation:

d

dt

(
1
2
ρρ
)

= Pρ − χ, (2.15)

Pρ = −Sρu3ρ, (2.16)

χ = κ
∂ρ

∂xk

∂ρ

∂xk
. (2.17)

The potential energy Kρ can be computed from the density variance:

Kρ =
1

2

g

ρ0|Sρ|
ρρ. (2.18)

2.3. Parameters governing the turbulence evolution

To derive the non-dimensional parameters governing the turbulence evolution, the
transport equation for the turbulent kinetic energy K is scaled. Let q be the charac-
teristic velocity scale, l the characteristic length scale and r the characteristic density
scale. A characteristic time scale for the turbulence evolution is then given by τ = l/q.
In addition the Taylor microscale λ is introduced as a derivative length scale by
ε = 5νq2/λ2. The terms of the transport equation for the kinetic energy K are divided
by the dissipation ε:

1

ε

d

dt
K︸ ︷︷ ︸

1

=
P

ε︸︷︷︸
2

− B

ε︸︷︷︸
3

−1 (2.19)

and scaled as follows:

O(term 1) = Reλλ/l, (2.20)

O(term 2) = SK/ε, (2.21)

O(term 3) = Ri
Le

l

(
SK

ε

)2
1

Reλ

l

λ
. (2.22)

Here Reλ = qλ/ν denotes the Reynolds number based on the Taylor microscale,
Ri = −(gSρ)/(ρ0S

2) the Richardson number, and Le = r/Sρ the Ellison scale. The
kinetic energy is K = O(q2). Therefore, the non-dimensional parameters governing
the turbulence evolution for this low-Reynolds-number scaling are the Richardson
number Ri, the Taylor microscale Reynolds number Reλ and the shear number
SK/ε. In addition, the initial conditions influence the turbulence evolution by the
length-scale ratios λ/l of the velocity fields and Le/l of the density field.

For high Reynolds numbers, the dissipation varies as ε = O(q3/l) or equivalently
O(l/λ) = Reλ. This simplifies the scaling to

O(term 1) = 1, (2.23)

O(term 2) = SK/ε, (2.24)
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O(term 3) = Ri
Le

l

(
SK

ε

)2

. (2.25)

Therefore, the non-dimensional parameters governing the turbulence evolution for
the high-Reynolds-number scaling are the Richardson number Ri, the shear number
SK/ε, and the ratio Le/l.

Additional parameters can be obtained from the evolution equation of the potential
energy. These parameters are not considered in this investigation. Effects of a variation
of the molecular Prandtl number Pr and the initial energy partition η, the ratio of
potential to kinetic energy, were considered by Gerz et al. (1989) and Holt et al.
(1992). The effect of varying the shear number SK/ε was not studied in previous
investigations.

We emphasize that, for a given initial spectral shape of the flow perturbations, a
parameterization based on the initial values of the Reynolds number Reλ and the
shear number SK/ε is possible, because initially different values of these parameters
remain different throughout all simulations performed in this study, as shown in
figures 17(a) and 17(b).

3. Numerical procedure
In this section the numerical method is described, and the initial conditions and

their importance are discussed. A validation of the numerical method is given in the
Appendix.

3.1. Numerical algorithm

The numerical scheme uses a spectral collocation method for the spatial discretization.
To compute spatial partial derivatives, the dependent variables are transformed into
Fourier space using the fast Fourier transformation algorithm, multiplied with the
corresponding wavenumbers, and transformed back into physical space. Second
derivatives are computed by applying this method successively. The nonlinear terms
are computed in physical space.

The solution is advanced in time using a third-order Runge–Kutta method. During
the time advancement the coordinate system in the moving frame of reference becomes
more and more skewed. Following a method originally devised by Rogallo (1981),
the coordinate system is reoriented from +45◦ to −45◦ using the periodic structure
of the dependent variables. The regridding procedure produces aliasing errors. These
errors are controlled by truncation of the affected modes (2kmax/3 < k < kmax) before
and after the regridding procedure.

The results presented here are from simulations using 1283 grid points, with the
following exceptions. The low-Reynolds-number Reλ 6 22.36 and low-shear-number
SK/ε 6 4.0 simulations are performed on a 963 grid, and the high-Reynolds-number
simulations Reλ > 67.08 are performed on a 1443 grid.

3.2. Initial conditions

The initial spectra have to be defined carefully to allow a parameterization of the
flow evolution based on the initial values of the parameters discussed in §2.3. Usually
a random number generator is used to produce the initial fluctuating fields. These
fields follow a specified initial energy spectrum and fulfil the continuity equation,
but they contain no phase information and have no initial spectral transfer. The
energy spectrum E is half the shell average of the squared amplitude of the three-
dimensional Fourier transformation of the velocity. Initial energy spectra used in
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Figure 2. Evolution of the turbulent kinetic energy K for different initial spectra. The initial
values of the non-dimensional parameters for all cases are Ri = 0.08, Reλ = 22.36, and SK/ε = 2.0.

previous investigations include the top-hat spectrum (Holt et al. 1992)

E(k) =

{
E0 for k1 < k < k2

0 elsewhere,
(3.1)

and the exponential spectrum (Sarkar 1995)

E(k) = E0k
4 exp(−2k2/k2

0). (3.2)

Unfortunately these spectra result in an initial transient in the simulations that does
not allow a parameterization based on initial values. In figure 2 the evolution of the
turbulent kinetic energy K is shown for simulations with different initial radial spectra
but identical initial values of the Richardson number Ri = 0.08, the Reynolds number
Reλ = 22.36, and the shear number SK/ε = 2.0. The simulations with equations (3.1)
and (3.2) as initial spectra show a large initial decay of K during the transient phase
and finally continue to decay. In figures 3(a) and 3(b) the evolution of the Reynolds
number Reλ and the shear number SK/ε are shown. During the initial transient these
numbers exhibit a large drop. Therefore their initial values are not characteristic of
the asymptotic evolution of the turbulence.

To reduce the initial drop in K , Reλ, and SK/ε, an alternative initialization method
is introduced. The actual simulation of a stratified shear flow uses as initial fields
the resulting fields of a simulation of unstratified unsheared isotropic turbulence.
The initial value of the Reynolds number of the initialization simulation is chosen
such that the final value matches the target initial Reynolds number of the actual
simulation. The initialization simulation is advanced for about one eddy-turnover
time and thus beyond the initial transient. During this time the skewness of ∂u/∂x,
which is a measure of the spectral transport, increases from zero to a final value
Sk = −0.46. This value is in good agreement with other experimental and numerical
results of −0.5 < Sk < −0.4 (Lesieur 1993). From the shape of the spectrum of these
simulations the following alternative exponential spectrum was derived:

E(k) = E0k
2 exp(−2k/k0). (3.3)

The results of simulations started from these initial conditions are also shown in
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Figure 3. Evolution of (a) the Reynolds number Reλ and (b) the shear number SK/ε for different
initial spectra.

figures 2, 3(a) and 3(b). They result only in a small initial decay of the turbulent
kinetic energy K , which has a physical explanation that will be discussed in §4. Neither
Reλ nor SK/ε show an initial drop. The simulations initialized with spectra (3.2) and
(3.3) use a peak wavenumber k0 = 8. The spectrum of the isotropic turbulence has a
peak wavenumber k0 = 7. The simulation initialized with the top-hat spectrum uses
the wavenumbers k1 = 6 and k2 = 12.

During the initial transient, the energy spectrum defined by the initial conditions
evolves into a spectrum characteristic for shear flow. Figure 4(a) shows the evolution
of the spectrum for the simulation started from isotropic initial conditions. In the
initial phase of the simulation (0 < St < 5), the low-wavenumber portion gains
energy, and the high-wavenumber portion loses energy, but the general shape of
the spectrum changes only slightly. A very similar evolution, though not shown,
was observed for the spectrum of the simulation initialized with spectrum (3.3).
Figure 4(b) shows the evolution of the spectrum for the simulation initialized with
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Figure 4. Evolution of the energy spectrum (a) for isotropic initial conditions and (b) for random
initial conditions with a top-hat spectrum.

the top-hat spectrum. Comparison shows that the initial state does not contain a
sufficient amount of energy at the lowest wavenumbers and in the high-wavenumber
portion of the spectrum. During the initial transient, energy is redistributed into these
wavenumber portions. This increases strongly the viscous dissipation ε, which in turn
results in the large drop of SK/ε and Reλ. This renders the initial values of these
parameters uncharacteristic for the prediction of the asymptotic state of the flow. A
similar evolution was observed for the spectrum of the simulation initialized with
spectrum (3.2).

The initial condition of well-developed isotropic turbulence from a previous direct
numerical simulation was chosen, because it represents a solution of the equations
of motion for unstratified unsheared flow, and it allows an effective parameterization
based on initial values. Isotropic initial conditions also compare better with the initial
conditions found in experiments, where nearly isotropic conditions develop behind
the turbulence-generating grid before the effects of shear and stratification become



Turbulence evolution in a uniformly sheared and stably stratified flow 241

Ri Reλ SK/ε Grid size

Ri series 0.0 44.72 2.0 1283

0.08 44.72 2.0 1283

0.12 44.72 2.0 1283

0.16 44.72 2.0 1283

0.20 44.72 2.0 1283

Reλ series 0.08 11.18 2.0 963

0.08 22.36 2.0 963

0.08 33.54 2.0 1283

0.08 44.72 2.0 1283

0.08 67.08 2.0 1443

0.08 89.44 2.0 1443

SK/ε series 0.06 22.36 0.2 963

0.06 22.36 0.5 963

0.06 22.36 1.0 963

0.06 22.36 2.0 963

0.06 22.36 4.0 963

0.06 22.36 6.0 1283

0.06 22.36 8.0 1283

0.06 22.36 10.0 1283

Table 1. Overview of the simulations described in this section. The simulations are initialized
with well-developed isotropic turbulence fields with no density fluctuations. The molecular Prandtl
number Pr = 0.72 is fixed.

important. All the shear flow simulations presented in this paper are based on the
initialization method using well-developed isotropic turbulence fields obtained from
a separate isotropic turbulence simulation initialized with spectrum (3.3).

4. Evolution of the kinetic energy
This section presents the results of a series of simulations, in which the Richardson

number Ri, the initial value of the Reynolds number Reλ, and the initial value of the
shear number SK/ε are varied independently. Each section describes the influence
of one parameter on the turbulent kinetic energy evolution and gives a physical
explanation for that influence.

Table 1 gives an overview of the simulations described in this section. All sim-
ulations are initialized with velocity fields taken from simulations of unstratified
unsheared decaying isotropic turbulence with no density fluctuations. The molecular
Prandtl number Pr = 0.72 is fixed.

4.1. Richardson number dependence

All simulations show qualitatively the same dependence on Ri. Therefore one set of
simulations with the initial values Reλ = 44.72 and SK/ε = 2.0 is discussed here.

Figure 5(a) shows the evolution of the turbulent kinetic energy K as a function of
the non-dimensional time St with Ri as the variable parameter. After an initial decay
K grows for small Richardson numbers and decays for high Richardson numbers.
This makes it possible to define a critical Richardson number Ricr for the case of
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constant K:

d

dt
K

{
> 0 for Ri < Ricr
= 0 for Ri = Ricr
< 0 for Ri > Ricr .

(4.1)

The initial decay in all cases is due to the isotropic initial conditions that cause
the production term P = −Su1u3 to be initially zero. During the initial phase the
production term grows. The initial decay has been observed in other numerical
simulations (Gerz et al. 1989 and Holt et al. 1992) and experimental investigations
(Rohr et al. 1988 and Piccirillo & Van Atta 1997).

In the case of homogeneous turbulent unstratified shear flow, experiments (Tavou-
laris & Karnik 1989) and direct numerical simulations (Rogers et al. 1986) support
eventual exponential growth of the turbulent kinetic energy K . Rohr et al. (1988)
have suggested that the evolution of K in the stratified case may also be exponential.
An expression for the non-dimensional growth rate γ is obtained by rewriting the
transport equation for the turbulent kinetic energy (2.9):

γ =
1

SK

dK

dt
= −2b13

(
1− ε

P
− B

P

)
. (4.2)

Here b13 is the 1–3 component of the shear stress anisotropy tensor bij = uiuj/ukuk−
δij/3. Under the assumption that each term on the right-hand side of equation (4.2)
evolves to an asymptotically constant value for large non-dimensional time St, the
equation can be integrated to obtain

K = K0 exp (γSt). (4.3)

The exponential approximation is also shown with dashed lines in figure 5(a). The
constant of integration is used to fit the graphs. The agreement shows that exponential
growth or decay of the turbulent kinetic energy K is a good approximation. The
exponential decay of K for the case Ri > Ricr is different from the power law
decay observed in unsheared decaying initially isotropic turbulence behind a grid.
Figure 5(b) shows the evolution of the growth rate γ. Note that a positive value of
γ is associated with growth and a negative value with decay of the turbulent kinetic
energy K . The asymptotic value of the growth rate γ is positive for small Ri and
negative for large Ri. The evolution of the anisotropy b13 is shown in figure 6. The
magnitude of b13 decreases with increasing Ri. Therefore the effect of stratification
reduces the anisotropy of the flow introduced by the effect of shear. Figure 7(a)
shows the evolution of ε/P for various Ri. The asymptotic value of ε/P increases
with increasing Ri. The evolution of B/P is presented in figure 7(b). The asymptotic
value of the ratio B/P increases with increasing Ri.

The value of the critical Richardson number for this set of simulations is about
Ricr = 0.167. (The method used to obtain the value of Ricr is described in §6.)
While the other sets show qualitatively the same Richardson number dependence, the
value of Ricr varies when the initial values of parameters such as Reλ and the SK/ε
are changed. The previous numerical simulations (Gerz et al. 1989 and Holt et al.
1992) and previous experimental investigations (Rohr et al. 1988 and Piccirillo &
Van Atta 1997) found the same qualitative influence of the Richardson number, but
the reported values of Ricr and the dependence of Ricr on other parameters in these
investigations show significant differences. This will be addressed in §6.
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To investigate the influence of shear and buoyancy, the turbulent kinetic energy
equation is rewritten in a non-dimensional form:

1

ε

dK

dt
=
P

ε
− B

ε
− 1. (4.4)

Figures 8(a) and 8(b) show the evolution of B/ε and P/ε, respectively. As expected
B/ε grows with the Richardson number. But this increase is too small to account
for the change in the evolution of K . On the other hand P/ε decreases strongly
with increasing Richardson number. Therefore the primary effect of buoyancy is
not a direct sink for K through the buoyancy flux but is the indirect reduction of
the shear-induced production of K . This result is in agreement with the previous
investigations by Holt et al. (1992) and Rohr et al. (1988).
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4.2. Reynolds number dependence

In this subsection the results from simulations with a fixed Richardson number
Ri = 0.08 and a fixed initial value of the shear number SK/ε = 2.0 are presented.
The initial value of the Taylor microscale Reynolds number Reλ is varied within the
range accessible in this investigation to study its influence on the turbulence evolution.

Figure 9(a) shows the evolution of the turbulent kinetic energy K . Initially K decays
due to the isotropic initial conditions. This initial decay increases with increasing Reλ.
After this initial phase K continues to decay for small Reλ but starts to grow for
larger Reλ.

The evolution of the exponential growth rate γ is shown in figure 9(b). For the
low-Reynolds-number simulation with Reλ = 11.18, the growth rate γ is negative,
and the turbulent kinetic energy K decays. For a finite range of moderate Reynolds
numbers with Reλ 6 44.72, the growth rate γ increases with increasing Reλ, becomes
positive, and reaches a maximum. For even higher Reynolds numbers Reλ > 44.72,
the growth rate γ decreases slightly with increasing Reλ and appears to become
relatively insensitive to Reλ.

A necessary requirement for the Reynolds number independence of the growth rate
γ is that the turbulent dissipation rate varies according to the high-Reynolds-number
scaling ε = Au3/l where A is a constant of order 1. After examining experimental
data on grid turbulence, Sreenivasan (1984) determined that A = εl/u3 decreases
with increasing Reynolds number and asymptotically reaches the value A = 1.0 for
uλ/ν > 50 or Reλ = qλ/ν > 87. Recently, Lohse (1994), in an analytical work
that starts with a differential equation for the velocity structure function derived by
Effinger & Grossmann (1987), shows that the coefficient A becomes constant for
values of Reλ greater than approximately 50. In the present work, the Reynolds
number at the end of the simulations is in the range 40 < Reλ < 110. Thus, our
observation of the turbulence growth rate becoming approximately independent at the
higher Reynolds numbers in this range is consistent with the results of Sreenivasan
(1984) and Lohse (1994).

The evolution of the anisotropy b13 is presented in figure 10 for various initial
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values of Reλ. The asymptotic value of b13 decreases with increasing Reλ and finally
reaches a constant value independent of Reλ. Figure 11(a) shows the evolution of
ε/P for various Reλ. The asymptotic value of ε/P decreases with increasing Reλ for
Reλ 6 44.72. For Reλ > 44.72 the ratio ε/P increases with increasing Reλ but finally
becomes independent of Reλ. From equation (4.2) it is clear that the minimum of ε/P
at Reλ = 44.72 causes the maximum of the growth rate γ at this Reynolds number.
The evolution of B/P is shown in figure 11(b). The asymptotic value of the ratio
B/P becomes approximately independent of the Reynolds number for Reλ > 44.72.

4.3. Shear number dependence

In this subsection the dependence of the turbulence evolution on the initial value of
the shear number SK/ε is addressed. The Richardson number Ri = 0.06 and the
initial value of the Reynolds number Reλ = 22.36 are fixed.
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In figure 12(a) the evolution of the turbulent kinetic energy K is presented as a
function of SK/ε. Initially K decays due to the isotropic initial conditions. This decay
is stronger for the simulations with a smaller SK/ε, because for these simulations the
turbulence time scale K/ε is small compared to the shear time scale 1/S . Therefore
the turbulence has more time to decay before the turbulence production due to shear
becomes significant. The growth rate γ of the turbulent kinetic energy is shown in
figure 12(b).

The further evolution of the turbulent kinetic energy K can be divided into three
regimes. First, for the low-shear-number simulation with SK/ε = 0.2, the growth rate
γ is negative, and K continues to decay. For this case the turbulence production due
to shear P is always smaller than the turbulence destruction due to buoyancy effects
B and viscous dissipation ε, that is P < B+ε. Second, for a finite regime of moderate
shear numbers 0.5 6 SK/ε 6 6.0, the growth rate γ is positive, and K grows. The tur-
bulence production is larger than the turbulence destruction, that is P > B+ε. Third,
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for large shear numbers SK/ε > 6.0, the growth rate γ is negative, and K decays again.
This decay is due to a strongly reduced turbulence production as will be shown below.

Although the decay of the turbulent kinetic energy K for high shear numbers seems
counterintuitive, there is an explanation for this effect. Consider the unstratified case
first. For high SK/ε, linear effects dominate the turbulence evolution, and rapid
distortion theory (RDT) applies at least for short times. It is known, see for example
Rogallo (1981) and Rogers (1991), that viscous RDT predicts eventual decay of
the velocity fluctuations after an initial period of algebraic growth. Direct numerical
simulations of rapidly sheared turbulence with initial SK/ε = 13 by Lee, Kim & Moin
(1990) show that the magnitude of shear stress anisotropy b13 and the growth rate γ are
substantially smaller than corresponding values for the moderately sheared case. Their
simulations extended up to St = 12 which corresponds to approximately one eddy
turnover time. Whether the stabilizing effect of high shear numbers persists at large
non-dimensional time St in the unstratified case is probably still an open question.
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Now consider the stably stratified case. For the initial shear number SK/ε to
have an influence on the evolution of the turbulent kinetic energy K , it is enough
that the stabilizing rapid distortion effect persists for a time that is long enough
for stratification effects to become important. For Ri = 0.06, the interval St = 12
in the DNS of Lee et al. (1990) corresponds to Nt = 3 which is sufficiently long.
Therefore, the strongly sheared, stratified cases show substantially reduced values of
γ in figure 12(b). The temporal oscillations in the evolution of γ are associated with
the Brunt–Väisälä period, N. The SK/ε = 8.0 simulation which shows eventual decay
of turbulence was continued to a large value of St = 30, equivalent to approximately
7 Brunt-Väisälä periods and 3.75 eddy turnover times. These characteristic times are
long enough to surmise that large shear numbers have a significant effect on the
asymptotic fate of the turbulence evolution in a stratified shear flow.

The shear number range for which the turbulence asymptotically grows decreases
with increasing Richardson number. For sufficiently large Richardson numbers the
range of growth disappears, and the turbulent kinetic energy K always decays.

In figure 13 the evolution of the anisotropy b13 is shown. The asymptotic value
of the magnitude of b13 decreases with increasing SK/ε. Figure 14(a) shows the
evolution of ε/P . The asymptotic value of ε/P decreases with SK/ε for SK/ε 6 4.0,
reaches a minimum, and finally increases with SK/ε for SK/ε > 4.0. The minimum
of ε/P at SK/ε = 4.0 corresponds to a maximum of the growth rate γ at this shear
number. The evolution of B/P is presented in figure 14(b). The asymptotic value of
B/P is nearly independent of SK/ε.

The stabilizing effect of large initial values of SK/ε is associated with, first, a
decrease of the asymptotic values of b13 as shown in figure 13 and, second, an increase
of ε/P . The first effect is on the large-scale, energy-containing eddies that appears
in rapid distortion analysis too. The second effect on ε/P = 1/(SK/ε) ∗ 1/(−2b13) is
primarily due to the decrease of the asymptotic value of b13. Although the final values
of SK/ε are larger for larger initial values of SK/ε, the net effect is an increase of
ε/P .
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5. Dependence of the asymptotic growth rate
In this section the dependence of the asymptotic values of the exponential growth

rate γ on Ri and the initial values of Reλ and SK/ε is summarized. The asymptotic
values of the growth rate γ are computed as the average of the right-hand side of
equation (4.2) for non-dimensional times St > 8.

Figure 15 shows the dependence of γ on Ri. The initial values of the Reynolds
number Reλ = 44.72 and the shear number SK/ε = 2.0 are fixed. The growth rate γ
decreases approximately linearly with increasing Ri.

The variation of γ with the initial value of Reλ is presented in figure 16(a). The
Richardson number Ri = 0.08 and the initial value of the shear number SK/ε = 2.0
are fixed. For low Reynolds numbers, γ increases with increasing Reλ. The growth
rate γ reaches a maximum and decreases slightly. For high Reynolds numbers, γ
tends to become independent of Reλ.
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The dependence of γ on the initial value of SK/ε is shown in figure 16(b).
The Richardson number Ri = 0.06 and the initial value of the Reynolds number
Reλ = 22.36 are kept constant. For low shear numbers, the growth rate γ increases
with increasing SK/ε. The growth rate γ reaches a maximum and decreases with a
further increase of SK/ε. Note that only a variation of SK/ε can lead to two critical
cases with γ = 0.

The evolution of Reλ for the series of simulations with different initial values of
Reλ is shown in figure 17(a). The Richardson number Ri = 0.08 and the initial value
of the shear number SK/ε = 2.0 are fixed. A parameterization of the exponential
growth rate in terms of the initial value of Reλ is meaningful, because the curves of
the Reynolds number evolution do not intersect. In addition, the shape of the growth
rate dependence on the Reynolds number, as shown in figure 16(a), does not change
substantially with time.

Figure 17(b) shows the evolution of SK/ε for the series of simulations with different
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initial values of SK/ε. The Richardson number Ri = 0.06 and the initial value of
the Reynolds number Reλ = 22.36 are fixed. The variation of γ can be presented in
terms of the initial value of the shear number SK/ε, because the curves of the shear
number evolution do not intersect. Also, the shape of the growth rate dependence on
the shear number, as shown in figure 16(b), does not change substantially in time.

6. The critical Richardson number
The critical Richardson number Ricr is defined as the value of Ri for which the

turbulent kinetic energy K stays constant in time. In §2.3 it was shown that the
evolution of the turbulent kinetic energy K depends on Ri and the initial values of
Reλ and SK/ε. Therefore Ricr is a function of the initial values of Reλ and SK/ε.

For the critical case, the turbulent kinetic energy equation (2.9) simplifies to

1

ε

dK

dt
=
P

ε
− B

ε
− 1 = 0 (6.1)

or
B

ε
=
P

ε
− 1. (6.2)

The low-Reynolds-number scaling equations (2.21) and (2.22) for P/ε and B/ε lead
to

Ricr =
1

α

λ

5l
Reλ

1

SK/ε

(
β − 1

SK/ε

)
. (6.3)

The high-Reynolds-number scaling equations (2.24) and (2.25) for P/ε and B/ε lead
to

Ricr =
1

α

1

SK/ε

(
β − 1

SK/ε

)
. (6.4)

The coefficients are

α = 4
u3ρ

urms3 ρrms
urms3

q

Le

l
, (6.5)



252 F. G. Jacobitz, S. Sarkar and C. W. Van Atta

0.20

0.15

0 10 20 30
St

(b)

3

2

1

0 10 30
St

(a)

SK/ε =1

4

0.2

0.10

0.05

20

6

8

1

SK/ε =10

0.5

2

B
P

ε

P

Figure 14. Evolution of (a) ε/P and (b) B/P as a function of the initial value of SK/ε.
Ri = 0.06 and the initial value of Reλ = 22.36 are fixed.

β = −2b13. (6.6)

This dependence of Ricr on Reλ and SK/ε is exact for the instantaneous values
of Reλ, SK/ε, α, and β. In order to estimate the dependence of Ricr on the initial
values of Reλ and SK/ε we assume that, first, the coefficients α and β are constant
and, second, the final values of Reλ and SK/ε are monotone increasing functions
of the initial values of Reλ and SK/ε. The second assumption is a result of our
direct numerical simulations, and the first assumption is a reasonable approximation
to the turbulence state after an initial transient according to our direct numerical
simulations.

Then, it can be expected from equation (6.3) that for low Reynolds numbers, Ricr
grows linearly with increasing initial values of Reλ and, from equation (6.4), that for
high Reλ the critical Richardson number Ricr becomes independent of Reλ.

In addition, it can be expected that Ricr varies with the initial value of SK/ε as
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given by equations (6.3) and (6.4). The shear number dependence in these equations
shows that for small SK/ε, the critical Richardson number Ricr grows with increasing
SK/ε, reaches a maximum, and finally decreases with a further increase of SK/ε. It
is therefore possible to obtain the same value of Ricr for two different values of SK/ε.

Also note that the critical Richardson number can be negative for sufficiently small
initial values of the Reynolds and shear numbers. In this case an unstable density
stratification must be maintained to allow for a constant level of turbulence. The
analysis presented here was inspired by an argument given in Townsend (1957).

Simulations were performed to find the dependence of the critical Richardson num-
ber Ricr on the initial values of the Reynolds number Reλ and the shear number SK/ε
numerically. In §5 it was shown that the exponential growth rate γ is approximately
a linear function of the Richardson number Ri. Therefore the value of Ricr was
determined by identifying two nearby Richardson numbers that cause growth and
decay and using linear interpolation.

Figure 18(a) shows the variation of Ricr as a function of the initial value of Reλ
as determined by DNS. The initial value of SK/ε is kept constant in this series of
simulations. The value of Ricr increases with the initial value of Reλ. For large Reλ,
Ricr varies only slightly with Reλ.

The dependence of Ricr on the initial value of SK/ε is shown in figure 18(b). In
this series of simulations the initial value of Reλ is kept constant. With increasing
SK/ε, the critical Richardson number Ricr increases, reaches a maximum, and finally
decreases. Therefore the same value of Ricr can be obtained at two different SK/ε.

Thus, the variation of the critical Richardson number Ricr as determined from
DNS agrees qualitatively with the variation indicated by the scaling analysis of the
transport equation for the turbulent kinetic energy.

The laboratory experiments of Piccirillo & Van Atta (1997) showed that when the
mesh size (and thereby the microscale Reynolds number) of the grid was increased,
Ricr decreased, in apparent contradiction to the finding of Holt et al. (1992) who
found an increase in Ricr with increasing Reynolds number. After examination of
the laboratory data, it was found that SK/ε decreases when the mesh size of the
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grid increases. The shear number values in the laboratory were below 0.5, placing
them in the left-hand corner of the plot in figure 18(b) and thus in the range where
Ricr decreases with decreasing SK/ε. Thus, the decrease in Ricr with increasing mesh
size in the laboratory experiment may be a shear number effect and not a Reynolds
number effect.

7. Conclusions
In this investigation, a spectral collocation method for the direct numerical sim-

ulation of homogeneous turbulence in a stratified shear flow was implemented and
validated. In addition, the importance of carefully defined initial conditions for an
effective parameterization of the turbulence evolution was addressed. A dimensional
analysis was performed to derive the non-dimensional parameters governing the tem-
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poral development of the turbulence. These parameters are the Richardson number
Ri, the Reynolds number Reλ, and the shear number SK/ε. From the simulations, it
was found that, for a given spectral shape of the initial fluctuations, the evolution of
the turbulent kinetic energy K depends strongly on Ri and the initial values of Reλ
and SK/ε. Furthermore, it was shown that the evolution of K follows approximately
an exponential law.

The variation of the asymptotic value of the exponential growth rate γ with Ri,
the initial value of Reλ, and the initial value of SK/ε is shown in figures 15, 16(a),
and 16(b), respectively. The growth rate γ decreases approximately linearly with
increasing Ri. The stabilizing influence of the Richardson number on the turbulent
kinetic energy is not caused by the explicit sink associated with the buoyancy flux. It
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is due to the decreasing value of the relative turbulence production P/ε as well as
the decreasing magnitude of Reynolds shear stress anisotropy b13 with increasing Ri.

The growth rate γ increases with increasing initial values of Reλ but finally tends
to become independent for high Reλ.

The dependence of γ on the initial value of SK/ε is non-monotone. The growth
rate γ increases, reaches a maximum, and finally decreases with increasing SK/ε. The
decrease of γ as a function of SK/ε for large shear numbers is consistent with linear
viscous RDT results. Although RDT is strictly applicable for short times only, DNS
shows that the qualitative effect of the shear number suggested by RDT persists for
long times too. The stabilizing effect of increased shear number is associated mainly
with a decreased Reynolds shear stress anisotropy b13 and also has a contribution
from a reduced relative production P/ε. The shear number effect discussed here is
based on simulations at an initial Reynolds number Reλ = 22.36 (final values as large
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as Reλ ' 50) and a Richardson number Ri = 0.06. It is probable that the detailed
influence of the shear number may vary with the initial value of the Reynolds number
and the Richardson number and should be the subject of a future study.

The critical Richardson number Ricr is of interest, because for Ri < Ricr the
asymptotic fate of the turbulence is growth as opposed to decay for Ri > Ricr . The
value of Ricr was found to depend on the initial values of Reλ and SK/ε. The
variation of Ricr with Reλ and SK/ε is shown in figures 18(a) and 18(b), respectively.
The variation of Ricr in the DNS is large, ranging from 0.04 at the lowest values of
Reynolds and shear number to a high of 0.17. Thus in nonlinearly evolving uniform
shear flow, the estimate of Ricr = 0.25 motivated by the linear result of Miles (1961)
is not applicable. The simple scaling analysis of the turbulence transport equation in
§6 also suggests that Ricr varies as a function of Reynolds and shear numbers. The
critical Richardson number Ricr increases and finally tends to become independent
with increasing Reλ. This result is consistent with the results reported by Holt et al.
(1992). The critical Richardson number Ricr increases, reaches a maximum, and finally
decreases with increasing SK/ε. This shear number dependence of Ricr may explain
the experimental results of Piccirillo & Van Atta (1997). In their study a decrease of
Ricr with increasing grid size (and therefore increasing Reλ by a moderate amount
and decreasing SK/ε) was observed. Based on our numerical study, it appears that
the increase of Reλ does not cause a decrease of Ricr . However, the decrease of the
already small SK/ε contributes to the decrease of Ricr . The dependence of Ricr on
both Reλ and SK/ε observed in the DNS agrees qualitatively with results obtained
from a scaling analysis of the transport equation of the turbulent kinetic energy.

The authors acknowledge the support from the Office of Naval Research, Physical
Oceanography Program, through the grant ONR N00014-94-1-0223. F. G. Jacobitz
was partially supported by the Deutschen Akademischen Austauschdienst (DAAD-
Doktorandenstipendium aus Mitteln des zweiten Hochschulsonderprogramms). Su-
percomputer time was provided by the San Diego Supercomputer Center (SDSC)
and the US Army Corps of Engineers Waterways Experiment Station (WES).

Appendix. Validation

To ensure the reliability of the numerical method used in this study, a number
of validation simulations were performed. First, the solutions were compared with
results obtained by Holt et al. (1992). Second, the influence of the resolution of
the computational domain was investigated. Third, the universality of the non-
dimensional parameters introduced in §2.3 was established.

Comparison with Holt et al. (1992)

A simulation was performed that matches the initial radial spectrum and the initial
values of the non-dimensional parameters of the simulation labelled HD by Holt et
al. (1992). The evolution of the normalized Reynolds stress R∗13 = u1u3/(u

rms
1 urms3 ) and

of the normalized vertical transport R∗3ρ = u3ρ/(u
rms
3 ρrms) is shown in figures 19(a)

and 19(b), respectively. The computed values agree within 5%. The small differences
can be attributed to different methods used to advance the solutions in time and to
different initial random fields.
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Figure 19. Evolution of (a) the normalized Reynolds stress R∗13 = u1u3/(u
rms
1 urms3 ) and (b) the

normalized vertical transport R∗3ρ = u3ρ/(u
rms
3 ρrms). The diamonds correspond to the values obtained

by Holt et al. (1992).

Influence of spatial resolution

A simulation with the initial parameters Ri = 0.08, Reλ = 67.08, and SK/ε = 2.0
originally performed on a grid with 1283 points was restarted at St = 9.0 on a grid
with 1443 points. The extrapolation necessary for this grid expansion was done in
spectral space. Figure 20(a) shows the two-point correlations R11(x) at the non-
dimensional time St = 14 of the two simulations performed on the 1443 and 1283

grids. Both cases show that R11(x) decays to zero for sufficiently large x. Therefore
the resolution of the computational domain does not influence the evolution of the
largest turbulence scales.

To ensure a sufficient resolution of the small turbulence scales the energy spectra
E(k) at the non-dimensional time St = 14 of the two simulations performed on the
1443 and 1283 grids are shown in figure 20(b). The spectra show an identical evolution
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Figure 20. (a) Two-point correlations R11(x) and (b) energy spectra E(k) of two simulations with the
initial parameters Ri = 0.08, Reλ = 67.08, and SK/ε = 2.0 at the non-dimensional time St = 14. The
original simulation performed on a grid with 1283 points is compared with a simulation restarted
at St = 9.0 on a grid with 1443 points.

of the low-wavenumber portion and a sufficient resolution of the high-wavenumber
portion of the spectra. Therefore the grid used has the high resolution required to
obtain accurately the evolution of the turbulence.

Universality of the non-dimensional parameters

The universality of the non-dimensional parameters was checked by rescaling the
initial conditions of a simulation with the initial parameters Ri = 0.08, Reλ = 67.08,
and SK/ε = 2.0. The initial velocity fluctuations q are increased to a new value
q∗ = 2q. To keep the Reynolds number constant for a fixed initial spectrum, the
kinematic viscosity has to be changed to a new value ν∗ = 2ν. To keep the shear
number SK/ε constant, the shear rate S has to be changed to a new value S∗ = 2S .
The ratio of the turbulent kinetic energies K∗/K obtained from the rescaled and
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Figure 21. Evolution of the ratio of the turbulent kinetic energies K∗/K obtained from
simulations using the rescaled and the original initial parameters, respectively.

original simulations is shown in figure 21. This ratio always remains very close to its
initial value of 4.0 as it should. This shows the universality of the non-dimensional
parameters derived in §2.3.
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